3.370 \(\int \frac{A+B \cos (c+d x)}{\cos ^{\frac{5}{2}}(c+d x) (a+b \cos (c+d x))} \, dx\)

Optimal. Leaf size=150 \[ \frac{2 (A b-a B) E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{a^2 d}+\frac{2 b (A b-a B) \Pi \left (\frac{2 b}{a+b};\left .\frac{1}{2} (c+d x)\right |2\right )}{a^2 d (a+b)}-\frac{2 (A b-a B) \sin (c+d x)}{a^2 d \sqrt{\cos (c+d x)}}+\frac{2 A F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 a d}+\frac{2 A \sin (c+d x)}{3 a d \cos ^{\frac{3}{2}}(c+d x)} \]

[Out]

(2*(A*b - a*B)*EllipticE[(c + d*x)/2, 2])/(a^2*d) + (2*A*EllipticF[(c + d*x)/2, 2])/(3*a*d) + (2*b*(A*b - a*B)
*EllipticPi[(2*b)/(a + b), (c + d*x)/2, 2])/(a^2*(a + b)*d) + (2*A*Sin[c + d*x])/(3*a*d*Cos[c + d*x]^(3/2)) -
(2*(A*b - a*B)*Sin[c + d*x])/(a^2*d*Sqrt[Cos[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.770002, antiderivative size = 150, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 7, integrand size = 33, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.212, Rules used = {3000, 3055, 3059, 2639, 3002, 2641, 2805} \[ \frac{2 (A b-a B) E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{a^2 d}+\frac{2 b (A b-a B) \Pi \left (\frac{2 b}{a+b};\left .\frac{1}{2} (c+d x)\right |2\right )}{a^2 d (a+b)}-\frac{2 (A b-a B) \sin (c+d x)}{a^2 d \sqrt{\cos (c+d x)}}+\frac{2 A F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 a d}+\frac{2 A \sin (c+d x)}{3 a d \cos ^{\frac{3}{2}}(c+d x)} \]

Antiderivative was successfully verified.

[In]

Int[(A + B*Cos[c + d*x])/(Cos[c + d*x]^(5/2)*(a + b*Cos[c + d*x])),x]

[Out]

(2*(A*b - a*B)*EllipticE[(c + d*x)/2, 2])/(a^2*d) + (2*A*EllipticF[(c + d*x)/2, 2])/(3*a*d) + (2*b*(A*b - a*B)
*EllipticPi[(2*b)/(a + b), (c + d*x)/2, 2])/(a^2*(a + b)*d) + (2*A*Sin[c + d*x])/(3*a*d*Cos[c + d*x]^(3/2)) -
(2*(A*b - a*B)*Sin[c + d*x])/(a^2*d*Sqrt[Cos[c + d*x]])

Rule 3000

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e
_.) + (f_.)*(x_)])^(n_), x_Symbol] :> -Simp[((A*b^2 - a*b*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1)*(c + d*
Sin[e + f*x])^(1 + n))/(f*(m + 1)*(b*c - a*d)*(a^2 - b^2)), x] + Dist[1/((m + 1)*(b*c - a*d)*(a^2 - b^2)), Int
[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[(a*A - b*B)*(b*c - a*d)*(m + 1) + b*d*(A*b - a*B)*(m
 + n + 2) + (A*b - a*B)*(a*d*(m + 1) - b*c*(m + 2))*Sin[e + f*x] - b*d*(A*b - a*B)*(m + n + 3)*Sin[e + f*x]^2,
 x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^
2, 0] && RationalQ[m] && m < -1 && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ[n]) ||  !(IntegerQ[2*n] && LtQ[n,
-1] && ((IntegerQ[n] &&  !IntegerQ[m]) || EqQ[a, 0])))

Rule 3055

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*s
in[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> -Simp[((A*b^2 - a*b*B + a^2*C)*Cos[e +
 f*x]*(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^(n + 1))/(f*(m + 1)*(b*c - a*d)*(a^2 - b^2)), x] + Dis
t[1/((m + 1)*(b*c - a*d)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[(m + 1)*(b
*c - a*d)*(a*A - b*B + a*C) + d*(A*b^2 - a*b*B + a^2*C)*(m + n + 2) - (c*(A*b^2 - a*b*B + a^2*C) + (m + 1)*(b*
c - a*d)*(A*b - a*B + b*C))*Sin[e + f*x] - d*(A*b^2 - a*b*B + a^2*C)*(m + n + 3)*Sin[e + f*x]^2, x], x], x] /;
 FreeQ[{a, b, c, d, e, f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && Lt
Q[m, -1] && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ[n]) ||  !(IntegerQ[2*n] && LtQ[n, -1] && ((IntegerQ[n] &&
  !IntegerQ[m]) || EqQ[a, 0])))

Rule 3059

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2)/(Sqrt[(a_.) + (b_.)*sin[(e_.) +
(f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])), x_Symbol] :> Dist[C/(b*d), Int[Sqrt[a + b*Sin[e + f*x]]
, x], x] - Dist[1/(b*d), Int[Simp[a*c*C - A*b*d + (b*c*C - b*B*d + a*C*d)*Sin[e + f*x], x]/(Sqrt[a + b*Sin[e +
 f*x]]*(c + d*Sin[e + f*x])), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2
- b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 3002

Int[(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)]))/((c_.) + (d_.)*sin[
(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[B/d, Int[(a + b*Sin[e + f*x])^m, x], x] - Dist[(B*c - A*d)/d, Int[(a +
 b*Sin[e + f*x])^m/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]
&& NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rule 2805

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2*EllipticPi[(2*b)/(a + b), (1*(e - Pi/2 + f*x))/2, (2*d)/(c + d)])/(f*(a + b)*Sqrt[c + d]), x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rubi steps

\begin{align*} \int \frac{A+B \cos (c+d x)}{\cos ^{\frac{5}{2}}(c+d x) (a+b \cos (c+d x))} \, dx &=\frac{2 A \sin (c+d x)}{3 a d \cos ^{\frac{3}{2}}(c+d x)}+\frac{2 \int \frac{-\frac{3}{2} (A b-a B)+\frac{1}{2} a A \cos (c+d x)+\frac{1}{2} A b \cos ^2(c+d x)}{\cos ^{\frac{3}{2}}(c+d x) (a+b \cos (c+d x))} \, dx}{3 a}\\ &=\frac{2 A \sin (c+d x)}{3 a d \cos ^{\frac{3}{2}}(c+d x)}-\frac{2 (A b-a B) \sin (c+d x)}{a^2 d \sqrt{\cos (c+d x)}}+\frac{4 \int \frac{\frac{1}{4} \left (a^2 A+3 A b^2-3 a b B\right )+\frac{1}{4} a (4 A b-3 a B) \cos (c+d x)+\frac{3}{4} b (A b-a B) \cos ^2(c+d x)}{\sqrt{\cos (c+d x)} (a+b \cos (c+d x))} \, dx}{3 a^2}\\ &=\frac{2 A \sin (c+d x)}{3 a d \cos ^{\frac{3}{2}}(c+d x)}-\frac{2 (A b-a B) \sin (c+d x)}{a^2 d \sqrt{\cos (c+d x)}}-\frac{4 \int \frac{-\frac{1}{4} b \left (a^2 A+3 A b^2-3 a b B\right )-\frac{1}{4} a A b^2 \cos (c+d x)}{\sqrt{\cos (c+d x)} (a+b \cos (c+d x))} \, dx}{3 a^2 b}+\frac{(A b-a B) \int \sqrt{\cos (c+d x)} \, dx}{a^2}\\ &=\frac{2 (A b-a B) E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{a^2 d}+\frac{2 A \sin (c+d x)}{3 a d \cos ^{\frac{3}{2}}(c+d x)}-\frac{2 (A b-a B) \sin (c+d x)}{a^2 d \sqrt{\cos (c+d x)}}+\frac{A \int \frac{1}{\sqrt{\cos (c+d x)}} \, dx}{3 a}+\frac{(b (A b-a B)) \int \frac{1}{\sqrt{\cos (c+d x)} (a+b \cos (c+d x))} \, dx}{a^2}\\ &=\frac{2 (A b-a B) E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{a^2 d}+\frac{2 A F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 a d}+\frac{2 b (A b-a B) \Pi \left (\frac{2 b}{a+b};\left .\frac{1}{2} (c+d x)\right |2\right )}{a^2 (a+b) d}+\frac{2 A \sin (c+d x)}{3 a d \cos ^{\frac{3}{2}}(c+d x)}-\frac{2 (A b-a B) \sin (c+d x)}{a^2 d \sqrt{\cos (c+d x)}}\\ \end{align*}

Mathematica [A]  time = 2.20994, size = 262, normalized size = 1.75 \[ \frac{\frac{2 a \left (2 a^2 A-9 a b B+9 A b^2\right ) \Pi \left (\frac{2 b}{a+b};\left .\frac{1}{2} (c+d x)\right |2\right )}{a+b}-\frac{6 (A b-a B) \sin (c+d x) \left (\left (b^2-2 a^2\right ) \Pi \left (-\frac{b}{a};\left .-\sin ^{-1}\left (\sqrt{\cos (c+d x)}\right )\right |-1\right )-2 a (a+b) F\left (\left .\sin ^{-1}\left (\sqrt{\cos (c+d x)}\right )\right |-1\right )+2 a b E\left (\left .\sin ^{-1}\left (\sqrt{\cos (c+d x)}\right )\right |-1\right )\right )}{b \sqrt{\sin ^2(c+d x)}}+\frac{a \left (8 a A b-6 a^2 B\right ) \left (2 F\left (\left .\frac{1}{2} (c+d x)\right |2\right )-\frac{2 a \Pi \left (\frac{2 b}{a+b};\left .\frac{1}{2} (c+d x)\right |2\right )}{a+b}\right )}{b}+\frac{4 a^2 A \sin (c+d x)}{\cos ^{\frac{3}{2}}(c+d x)}+\frac{12 a (a B-A b) \sin (c+d x)}{\sqrt{\cos (c+d x)}}}{6 a^3 d} \]

Antiderivative was successfully verified.

[In]

Integrate[(A + B*Cos[c + d*x])/(Cos[c + d*x]^(5/2)*(a + b*Cos[c + d*x])),x]

[Out]

((2*a*(2*a^2*A + 9*A*b^2 - 9*a*b*B)*EllipticPi[(2*b)/(a + b), (c + d*x)/2, 2])/(a + b) + (a*(8*a*A*b - 6*a^2*B
)*(2*EllipticF[(c + d*x)/2, 2] - (2*a*EllipticPi[(2*b)/(a + b), (c + d*x)/2, 2])/(a + b)))/b + (4*a^2*A*Sin[c
+ d*x])/Cos[c + d*x]^(3/2) + (12*a*(-(A*b) + a*B)*Sin[c + d*x])/Sqrt[Cos[c + d*x]] - (6*(A*b - a*B)*(2*a*b*Ell
ipticE[ArcSin[Sqrt[Cos[c + d*x]]], -1] - 2*a*(a + b)*EllipticF[ArcSin[Sqrt[Cos[c + d*x]]], -1] + (-2*a^2 + b^2
)*EllipticPi[-(b/a), -ArcSin[Sqrt[Cos[c + d*x]]], -1])*Sin[c + d*x])/(b*Sqrt[Sin[c + d*x]^2]))/(6*a^3*d)

________________________________________________________________________________________

Maple [B]  time = 9.544, size = 468, normalized size = 3.1 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+B*cos(d*x+c))/cos(d*x+c)^(5/2)/(a+b*cos(d*x+c)),x)

[Out]

-(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(-4*(A*b-B*a)*b^2/a^2/(-2*a*b+2*b^2)*(sin(1/2*d*x+1
/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*Elliptic
Pi(cos(1/2*d*x+1/2*c),-2*b/(a-b),2^(1/2))+2*(-A*b+B*a)/a^2*(-(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c
)^2-1)^(1/2)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))+2*(-2*
sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2)/sin(1/2*d*x+1/2*c)^2
/(2*sin(1/2*d*x+1/2*c)^2-1)+2*A/a*(-1/6*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2
)/(cos(1/2*d*x+1/2*c)^2-1/2)^2+1/3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*
d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))))/sin(1/2*d*x+1/2*c)/(2*cos(1/2
*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{B \cos \left (d x + c\right ) + A}{{\left (b \cos \left (d x + c\right ) + a\right )} \cos \left (d x + c\right )^{\frac{5}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c))/cos(d*x+c)^(5/2)/(a+b*cos(d*x+c)),x, algorithm="maxima")

[Out]

integrate((B*cos(d*x + c) + A)/((b*cos(d*x + c) + a)*cos(d*x + c)^(5/2)), x)

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c))/cos(d*x+c)^(5/2)/(a+b*cos(d*x+c)),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c))/cos(d*x+c)**(5/2)/(a+b*cos(d*x+c)),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{B \cos \left (d x + c\right ) + A}{{\left (b \cos \left (d x + c\right ) + a\right )} \cos \left (d x + c\right )^{\frac{5}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c))/cos(d*x+c)^(5/2)/(a+b*cos(d*x+c)),x, algorithm="giac")

[Out]

integrate((B*cos(d*x + c) + A)/((b*cos(d*x + c) + a)*cos(d*x + c)^(5/2)), x)